TU Berlin

Neuronale InformationsverarbeitungPublikationen

Neuronale Informationsverarbeitung

Inhalt

zur Navigation

Suche

Suche nach Publikationen




Ausgewählte Publikationen

Seo, S., Mohr, J., Beck, A., Wüstenberg, T., Heinz, A. and Obermayer, K. (2015). Predicting the future relapse of alcohol-dependent patients from structural and functional brain images. Addiction Biology, 20, 1042-1055.


Ladenbauer, J., Augustin, M. and Obermayer, K. (2014). How Adaptation Currents Change Threshold, Gain and Variability of Neuronal Spiking. Journal of Neurophysiology, 111, 939–953.


Mohr, J., Park, J.-H. and Obermayer, K. (2014). A computer vision system for rapid search inspired by surface-based attention mechanisms from human perception. Neural Networks, 60, 182 - 193.


Shen, Y., Tobia, M. J., Sommer, T. and Obermayer, K. (2014). Risk-sensitive Reinforcement Learning. Neural Computation, 26, 1298-1328.


Böhmer, W., Grünewälder, S., Shen, Y., Musial, M. and Obermayer, K. (2013). Construction of Approximation Spaces for Reinforcement Learning. Journal of Machine Learning Research, 14, 2067–2118.


Houillon, A., Lorenz, R. C., Boehmer, W., Rapp, M. A., Heinz, A., Gallinat, J. and Obermayer, K. (2013). The effect of novelty on reinforcement learning. Progress in brain research, 202, 415–439.


Ladenbauer, J., Lehnert, J., Rankoohi, H., Dahms, T., Schöll, E. and Obermayer, K. (2013). Adaptation Controls Synchrony and Cluster States of Coupled Threshold-Model Neurons. Physical Review E, 88, 042713.


Shen, Y., Stannat, W. and Obermayer, K. (2013). Risk-sensitive Markov Control Processes. SIAM Journal on Control and Optimization, 51, 3652–3672.


Ladenbauer, J., Augustin, M., Shiau, L. and Obermayer, K. (2012). Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons. PLoS Computational Biology, 8


Onken, A., Dragoi, V. and Obermayer, K. (2012). A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts. PLoS Computational Biology, 8


Franke, F., Natora, M., Boucsein, C., Munk, M. and Obermayer, K. (2010). An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes. Journal of Computional Neuroscience, 127 – 148.


Jain, B. and Obermayer, K. (2009). Structure Spaces. Journal of Machine Learning Research, 10, 2667 – 2714.


Stimberg, M., Wimmer, K., Martin, R., Schwabe, L., Marino, J., Schummers, J., Lyon, D., Sur, M. and Obermayer, K. (2009). The Operating Regime of Local Computations in Primary Visual Cortex. Cerebral Cortex, 19, 2166 – 2180.


Henrich, F. and Obermayer, K. (2008). Active Learning by Spherical Subdivision. Journal of Machine Learning Research, 9, 105 – 130.


Young, J., Waleszczyk, W., Wang, C., Calford, M., Dreher, B. and Obermayer, K. (2007). Cortical Reorganization Consistent with Spike Timing- but not Correlation-Dependent Plasticity. Nat. Neurosci., 10, 887 – 889.


Hochreiter, J. and Obermayer, K. (2006). Support Vector Machines for Dyadic Data. Neural Comput., 18, 1472 – 1510.


Mariño, J., Schummers, J., Lyon, D., Schwabe, L., Beck, O., Wiesing, P., Obermayer, K. and Sur, M. (2005). Invariant Computations in Local Cortical Networks with Balanced Excitation and Inhibition. Nature Neuroscience, 8, 194 – 201.


Schmitt, S., Evers, J.-F., Duch, C., Scholz, M. and Obermayer, K. (2004). New Methods for the Computer-Assisted 3D Reconstruction of Neurons from Confocal Image Stacks. Neuroimage, 23, 1283 – 1298.


Wenning, G. and Obermayer, K. (2003). Activity Driven Adaptive Stochastic Resonance. Physical Review Letters, 90, 120602.


Nach oben

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe