TU Berlin

Neuronale InformationsverarbeitungModelle neuronaler Systeme

Neuronale Informationsverarbeitung


zur Navigation

Modelle neuronaler Systeme


Adaptation Controls Synchrony and Cluster States of Coupled Threshold-Model Neurons
Zitatschlüssel Ladenbauer2013a
Autor Ladenbauer, J. and Lehnert, J. and Rankoohi, H. and Dahms, T. and Schöll, E. and Obermayer, K.
Seiten 042713
Jahr 2013
DOI 10.1103/PhysRevE.88.042713
Journal Physical Review E
Jahrgang 88
Nummer 4
Zusammenfassung We analyze zero-lag and cluster synchrony of delay-coupled nonsmooth dynamical systems by extending the master stability approach, and apply this to networks of adaptive threshold-model neurons. For a homogeneous population of excitatory and inhibitory neurons we find (i) that subthreshold adaptation stabilizes or destabilizes synchrony depending on whether the recurrent synaptic excitatory or inhibitory couplings dominate, and (ii) that synchrony is always unstable for networks with balanced recurrent synaptic inputs. If couplings are not too strong, synchronization properties are similar for very different coupling topologies, i.e., random connections or spatial networks with localized connectivity. We generalize our approach for two subpopulations of neurons with nonidentical local dynamics, including bursting, for which activity-based adaptation controls the stability of cluster states, independent of a specific coupling topology.
Typ der Publikation Selected:main selected:adaptation selected:publications
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe