TU Berlin

Neuronale InformationsverarbeitungMaschinelles Lernen

Neuronale Informationsverarbeitung

Inhalt

zur Navigation

Maschnielles Lernen

Publikationen

Risk-Averse Reinforcement Learning for Algorithmic Trading
Zitatschlüssel Shen2014a
Autor Shen, Y. and Huang, R. and Yan, C. and Obermayer, K.
Buchtitel 2014 IEEE Computational Intelligence for Financial Engineering and Economics
Seiten 391-398
Jahr 2014
DOI 10.1109/CIFEr.2014.6924100
Zusammenfassung We propose a general framework of risk-averse reinforcement learning for algorithmic trading. Our approach is tested in an experiment based on 1.5 years of millisecond time-scale limit order data from NASDAQ, which contain the data around the 2010 flash crash. The results show that our algorithm outperforms the risk-neutral reinforcement learning algorithm by 1) keeping the trading cost at a substantially low level at the spot when the flash crash happened, and 2) significantly reducing the risk over the whole test period.
Link zur Publikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe