direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Maschnielles Lernen

Publikationen

Beyond Manual Tuning of Hyperparameters
Zitatschlüssel Hutter2015
Autor Hutter, F. and Lücke, J. and Schmidt-Thieme, L.
Seiten 329-337
Jahr 2015
ISSN 0933-1875, 1610-1987
DOI 10.1007/s13218-015-0381-0
Journal KI - Künstliche Intelligenz
Jahrgang 29
Nummer 4
Verlag Springer Berlin Heidelberg
Zusammenfassung The success of hand-crafted machine learning systems in many applications raises the question of making machine learning algorithms more autonomous, i.e., to reduce the requirement of expert input to a minimum. We discuss two strategies towards this goal: (1) automated optimization of hyperparameters (including mechanisms for feature selection, preprocessing, model selection, etc) and (2) the development of algorithms with reduced sets of hyperparameters. Since many research directions (e.g., deep learning), show a tendency towards increasingly complex algorithms with more and more hyperparamters, the demand for both of these strategies continuously increases. We review recent hyperparameter optimization methods and discuss data-driven approaches to avoid the introduction of hyperparameters using unsupervised learning. We end in discussing how these complementary strategies can work hand-in-hand, representing a very promising approach towards autonomous machine learning.
Link zur Originalpublikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe