direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Maschnielles Lernen

Publikationen

2009

Jain, B. and Obermayer, K. (2009). Algorithms for the Sample Mean of Graphs. Lecture Notes in Computer Science, 351 – 359.,


Jain, B. and Obermayer, K. (2009). Structure Spaces. Journal of Machine Learning Research, 10, 2667 – 2714.



Seo, S., Mohr, J. and Obermayer, K. (2009). A New Incremental Pairwise Clustering Algorithm. Proceedings of the ICMLA -09: The Eighth International Conference on Machine Learning and Applications. IEEE, 223 – 228.,10.1109/ICMLA.2009.42


2008

Jain, B. and Obermayer, K. (2008). On the Sample Mean of Graphs. 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, 993 – 1000.,10.1109/IJCNN.2008.4633920


Knebel, T., Hochreiter, S. and Obermayer, K. (2008). An SMO algorithm for the Potential Support Vector Machine. Neural Comput., 20, 271 – 287.


Lohoff, F., Lautenschlager, M., Mohr, J., Ferraro, T., Sander, T. and Gallinat, J. (2008). Association Between Variation in the Vesicular Monoamine Transporter 1 Gene on Chromosome 8p and Anxiety-Related Personality Traits. Neuroscience Letters, 434, 41 – 45.


Adiloglu, K., Annies, R., Henrich, F., Paus, A. and Obermayer, K. (2008). Geometrical Approaches to Active Learning. Autonomous Systems – Self-Organization, Management, and Control. Springer Netherlands, 11-19.,10.1007/978-1-4020-8889-6_2


Henrich, F. and Obermayer, K. (2008). Active Learning by Spherical Subdivision. Journal of Machine Learning Research, 9, 105 – 130.


2007

Jain, B. and Obermayer, K. (2007). Theory of the Sample Mean of Structures. LNVD 2007, Learning from Non-vectorial Data, 9-16.


Scheel, C., Neubauer, N., Lommatzsch, A., Obermayer, K. and Albayrak, S. (2007). Efficient Query Delegation by Detecting Redundant Retrieval Strategies. SIGIR Workshop on Learning to Rank for Information Retrieval 2007, (1 – 8).,


Grünewälder, S. and Obermayer, K. (2007). Optimality of LSTD and its Relation to MC. Neural Networks, IJCNN 2007, 338 – 343.,


2006

Hochreiter, J. and Obermayer, K. (2006). Support Vector Machines for Dyadic Data. Neural Comput., 18, 1472 – 1510.


Hochreiter, S. and Obermayer, K. (2006). Nonlinear Feature Selection with the Potential Support Vector Machine. Feature Extraction: Foundations and Applications. Springer Berlin Heidelberg, 419 – 438.,10.1007/978-3-540-35488-8_20


Seo, S. and Obermayer, K. (2006). Dynamic Hyperparameter Scaling Method for LVQ Algorithms. IJCNN 2006 Conference Proceedings. IEEE, 3196 – 3203.,10.1109/IJCNN.2006.247304


Vollgraf, R. and Obermayer, K. (2006). Quadratic Optimization for Simultaneous Matrix Diagonalization. IEEE Trans. Signal Processing Applications, 54, 3270 – 3278.


Vollgraf, R. and Obermayer, K. (2006). Sparse Optimization for Second Order Kernel Methods. IJCNN 2006 Conference Proceedings. IEEE, 145 – 152.,10.1109/IJCNN.2006.246672


2005

Hochreiter, S. and Obermayer, K. (2005). Optimal Gradient-Based Learning Using Importance Weights. Proceedings of the International Joint Conference on Neural Networks. IEEE, 114 – 119.,10.1109/IJCNN.2005.1555815


Hochreiter, S. and Obermayer, K. (2005). Optimal Kernels for Unsupervised Learning. Proceedings of the International Joint Conference on Neural Networks, 1895 – 1899.,10.1109/IJCNN.2005.1556169


Mohr, J. and Obermayer, K. (2005). A Topographic Support Vector Machine: Classification Using Local Label Configurations. Advances in Neural Information Processing Systems 17. MIT Press, 929 – 936.,


Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe