direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Maschnielles Lernen

Buchkapitel

2015

Böhmer, W., Springenberg, J. T., Boedecker, J., Riedmiller, M. and Obermayer, K. (2015). Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations. Künstliche Intelligenz. Springer Berlin Heidelberg, 353-362.

Link zur Originalpublikation

Böhmer, W. and Obermayer, K. (2015). Regression with Linear Factored Functions. Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 119-134.

Link zur Publikation

2011

Böhmer, W., Grünewälder, S., Nickisch, H. and Obermayer, K. (2011). Regularized Sparse Kernel Slow Feature Analysis. Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 235–248.

Link zur Originalpublikation

Jain, B. and Obermayer, K. (2011). Maximum Likelihood for Gaussians on Graphs. Graph-Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 62-71.

Link zur Publikation

Jain, B. and Obermayer, K. (2011). Generalized Learning Graph Quantization. Graph-Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 122-131.

Link zur Publikation

2010

Jain, B. and Obermayer, K. (2010). Elkan’s k-Means Algorithm for Graphs. Advances in Soft Computing. Springer Berlin Heidelberg, 22-32.

Link zur Publikation

2009

Jain, B. and Obermayer, K. (2009). Algorithms for the Sample Mean of Graphs. Lecture Notes in Computer Science, 351 – 359.

Link zur Originalpublikation

2008

Adiloglu, K., Annies, R., Henrich, F., Paus, A. and Obermayer, K. (2008). Geometrical Approaches to Active Learning. Autonomous Systems – Self-Organization, Management, and Control. Springer Netherlands, 11-19.

Link zur Publikation

2006

Hochreiter, S. and Obermayer, K. (2006). Nonlinear Feature Selection with the Potential Support Vector Machine. Feature Extraction: Foundations and Applications. Springer Berlin Heidelberg, 419 – 438.

Link zur Originalpublikation

2000

Herbrich, R., Graepel, T. and Obermayer, K. (2000). Large Margin Rank Boundaries for Ordinal Regression. Advances in Large Margin Classifiers. MIT Press, 115 – 132.

Link zur Publikation

1999

Hasenjäger, M., Ritter, H. and Obermayer, K. (1999). Active Learning in Self-Organizing Maps. Kohonen Maps. Elsevier, 57–70.

Link zur Publikation

Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P. and Obermayer, K. (1999). Neural Networks in Economics: Background, Applications and New Developments. Advances in Computational Economics: Computational Techniques for Modelling Learning in Economics. Kluwer Academics, 169 – 196.

Link zur Publikation

1991

Ritter, H., Obermayer, K. and Rubner, J. (1991). Self-Organizing Maps and Adaptive Filters. Physics of Neural Networks. Springer, 281 – 306.

Link zur Originalpublikation

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe