TU Berlin

Neuronale InformationsverarbeitungBuchkapitel

Neuronale Informationsverarbeitung

Inhalt

zur Navigation

Analyse neuronaler Daten

Buchkapitel

Nonlinear Feature Selection with the Potential Support Vector Machine
Zitatschlüssel Hochreiter2006c
Autor Hochreiter, S. and Obermayer, K.
Buchtitel Feature Extraction: Foundations and Applications
Seiten 419 – 438
Jahr 2006
ISBN 978-3-540-35487-1, 978-3-540-35488-8
ISSN 1434-9922
DOI 10.1007/978-3-540-35488-8_20
Herausgeber Guyon, I. and Gunn, S. and Nikravesh, M. and Zadeh, L.
Verlag Springer Berlin Heidelberg
Zusammenfassung We describe the “Potential Support Vector Machine” (P-SVM) which is a new filter method for feature selection. The idea of the P-SVM feature selection is to exchange the role of features and data points in order to construct “support features”. The “support features” are the selected features. The P-SVM uses a novel objective function and novel constraints — one constraint for each feature. As with standard SVMs, the objective function represents a complexity or capacity measure whereas the constraints enforce low empirical error. In this contribution we extend the P-SVM in two directions. First, we introduce a parameter which controls the redundancy among the selected features. Secondly, we propose a nonlinear version of the P-SVM feature selection which is based on neural network techniques. Finally, the linear and nonlinear P-SVM feature selection approach is demonstrated on toy data sets and on data sets from the NIPS 2003 feature selection challenge.
Typ der Publikation Selected:structured
Link zur Originalpublikation Download Bibtex Eintrag

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe