TU Berlin

Neuronale InformationsverarbeitungBuchkapitel

Neuronale Informationsverarbeitung


zur Navigation

Analyse neuronaler Daten


Nonlinear Feature Selection with the Potential Support Vector Machine
Zitatschlüssel Hochreiter2006c
Autor Hochreiter, S. and Obermayer, K.
Buchtitel Feature Extraction: Foundations and Applications
Seiten 419 – 438
Jahr 2006
ISBN 978-3-540-35487-1, 978-3-540-35488-8
ISSN 1434-9922
DOI 10.1007/978-3-540-35488-8_20
Herausgeber Guyon, I. and Gunn, S. and Nikravesh, M. and Zadeh, L.
Verlag Springer Berlin Heidelberg
Zusammenfassung We describe the “Potential Support Vector Machine” (P-SVM) which is a new filter method for feature selection. The idea of the P-SVM feature selection is to exchange the role of features and data points in order to construct “support features”. The “support features” are the selected features. The P-SVM uses a novel objective function and novel constraints — one constraint for each feature. As with standard SVMs, the objective function represents a complexity or capacity measure whereas the constraints enforce low empirical error. In this contribution we extend the P-SVM in two directions. First, we introduce a parameter which controls the redundancy among the selected features. Secondly, we propose a nonlinear version of the P-SVM feature selection which is based on neural network techniques. Finally, the linear and nonlinear P-SVM feature selection approach is demonstrated on toy data sets and on data sets from the NIPS 2003 feature selection challenge.
Typ der Publikation Selected:structured
Link zur Originalpublikation Download Bibtex Eintrag



Schnellnavigation zur Seite über Nummerneingabe