Inhalt des Dokuments
Buchkapitel
Zitatschlüssel | Boehmer2015c |
---|---|
Autor | Böhmer, W. and Springenberg, J. T. and Boedecker, J. and Riedmiller, M. and Obermayer, K. |
Buchtitel | Künstliche Intelligenz |
Seiten | 353-362 |
Jahr | 2015 |
ISSN | 0933-1875, 1610-1987 |
DOI | 10.1007/s13218-015-0356-1 |
Jahrgang | 29 |
Nummer | 4 |
Verlag | Springer Berlin Heidelberg |
Serie | Technical Contribution |
Zusammenfassung | This article reviews an emerging field that aims for autonomous reinforcement learning (RL) directly on sensor-observations. Straightforward end-to-end RL has recently shown remarkable success, but relies on large amounts of samples. As this is not feasible in robotics, we review two approaches to learn intermediate state representations from previous experiences: deep auto-encoders and slow-feature analysis. We analyze theoretical properties of the representations and point to potential improvements. |
Zusatzinformationen / Extras
Direktzugang:
Schnellnavigation zur Seite über Nummerneingabe