direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Analyse neuronaler Daten

Buchkapitel

Large Margin Rank Boundaries for Ordinal Regression
Zitatschlüssel Herbrich2000
Autor Herbrich, R. and Graepel, T. and Obermayer, K.
Buchtitel Advances in Large Margin Classifiers
Seiten 115 – 132
Jahr 2000
Herausgeber Smola, A. and Bartlett, P. and Schölkopf, B. and Schuurmans, D.
Verlag MIT Press
Zusammenfassung In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. This problem arises frequently in the social sciences and in information retrieval where human preferences play a major role. Whilst approaches proposed in statistics rely on a probability model of a latent (unobserved) variable we present a distribution independent risk formulation of ordinal regression which allows us to derive a uniform convergence bound. Applying this bound we present a large margin algorithm that is based on a mapping from objects to scalar utility values thus classifying pairs of objects. We give experimental results for an information retrieval task which show that our algorithm outperforms more naive approaches to ordinal regression such as Support Vector Classification and Support Vector Regression in the case of more than two ranks.
Typ der Publikation Selected:structured
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe