direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Konferenzpublikationen

Risk-Averse Reinforcement Learning for Algorithmic Trading
Zitatschlüssel Shen2014a
Autor Shen, Y. and Huang, R. and Yan, C. and Obermayer, K.
Buchtitel 2014 IEEE Computational Intelligence for Financial Engineering and Economics
Seiten 391-398
Jahr 2014
DOI 10.1109/CIFEr.2014.6924100
Zusammenfassung We propose a general framework of risk-averse reinforcement learning for algorithmic trading. Our approach is tested in an experiment based on 1.5 years of millisecond time-scale limit order data from NASDAQ, which contain the data around the 2010 flash crash. The results show that our algorithm outperforms the risk-neutral reinforcement learning algorithm by 1) keeping the trading cost at a substantially low level at the spot when the flash crash happened, and 2) significantly reducing the risk over the whole test period.
Link zur Publikation Download Bibtex Eintrag

Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe