direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Buchkapitel

2015

Böhmer, W., Springenberg, J. T., Boedecker, J., Riedmiller, M. and Obermayer, K. (2015). Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations. Künstliche Intelligenz. Springer Berlin Heidelberg, 353-362.,10.1007/s13218-015-0356-1


Böhmer, W. and Obermayer, K. (2015). Regression with Linear Factored Functions. Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 119-134.,10.1007/978-3-319-23528-8_8


2011

Böhmer, W., Grünewälder, S., Nickisch, H. and Obermayer, K. (2011). Regularized Sparse Kernel Slow Feature Analysis. Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 235–248.,


Jain, B. and Obermayer, K. (2011). Maximum Likelihood for Gaussians on Graphs. Graph-Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 62-71.,10.1007/978-3-642-20844-7_7


Jain, B. and Obermayer, K. (2011). Generalized Learning Graph Quantization. Graph-Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 122-131.,10.1007/978-3-642-20844-7_13


2010

Jain, B. and Obermayer, K. (2010). Elkan’s k-Means Algorithm for Graphs. Advances in Soft Computing. Springer Berlin Heidelberg, 22-32.,10.1007/978-3-642-16773-7_2


2009

Jain, B. and Obermayer, K. (2009). Algorithms for the Sample Mean of Graphs. Lecture Notes in Computer Science, 351 – 359.,


Martin, R. and Obermayer, K. (2009). Theoretical and Computational Neuroscience: Self-Organizing Maps. The Encyclopedia of Neuroscience. Academic Press, 561 – 570.,


2008

Ochab, B., Neubauer, N. and Obermayer, K. (2008). Personalized Recommendations for the Web 3D. Lecture Notes in Computer Science. Springer Verlag, 374 – 377.,http://dx.doi.org/10.1007/978-3-540-70987-9_57


Purwins, H., Blankertz, B. and Obermayer, K. (2008). Toroidal Models in Tonal Theory. Tonal Theory for the Digital Age - Computing in Musicology. Stanford University, 73 – 98.,


Adiloglu, K., Annies, R., Henrich, F., Paus, A. and Obermayer, K. (2008). Geometrical Approaches to Active Learning. Autonomous Systems – Self-Organization, Management, and Control. Springer Netherlands, 11-19.,10.1007/978-1-4020-8889-6_2


2007

Adiloglu, K. and Obermayer, K. (2007). Topological Features of the Two-Voice Inventions. Communications in Computer and Information Science. Springer Berlin Heidelberg, 67 – 73.,10.1007/978-3-642-04579-0_7


2006

Hochreiter, S. and Obermayer, K. (2006). Nonlinear Feature Selection with the Potential Support Vector Machine. Feature Extraction: Foundations and Applications. Springer Berlin Heidelberg, 419 – 438.,10.1007/978-3-540-35488-8_20


2005

Purwins, H., Normann, I. and Obermayer, K. (2005). Unendlichkeit - Konstruktion musikalischer Paradoxien. Mikrotöne und mehr: Auf György Ligetis Hamburger Pfaden. Bockel-Verlag, 39 – 80.,


2004

Hochreiter, S. and Obermayer, K. (2004). Gene Selection for Microarray Data. Kernel Methods in Computational Biology. MIT Press, 319 – 356.,


Purwins, H., Graepel, T. and Obermayer, K. (2004). Correspondence Analysis of Pitch Class, Key, and Composer. Perspectives of Mathematical and Computational Music Theory. Epos-Verlag, 432 – 454.,


2002

Lund, J. and Obermayer, K. (2002). Visual Cortex: Anatomical Structure and Models of Function. The Handbook of Brain Theory and Neural Networks. MIT Press, 1202 – 1205.,


2000

Obermayer, K. (2000). Modeling the Formation of Sensory Representations in the Brain. Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Volume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the Behavior of Natural and Artificial Systems, Volume 3. Springer Netherlands, 215 – 232.,10.1007/978-94-010-0870-9_16


Stetter, M. and Obermayer, K. (2000). Biology and Theory of Early Vision in Mammals. Brains and Biological Neural Networks. INNS Press, (1 – 50).,


Herbrich, R., Graepel, T. and Obermayer, K. (2000). Large Margin Rank Boundaries for Ordinal Regression. Advances in Large Margin Classifiers. MIT Press, 115 – 132.,


Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe