TU Berlin

Neural Information ProcessingMachine Learning

Neuronale Informationsverarbeitung

Page Content

to Navigation

Machine Learning

All Publications

Large Margin Rank Boundaries for Ordinal Regression
Citation key Herbrich2000
Author Herbrich, R. and Graepel, T. and Obermayer, K.
Title of Book Advances in Large Margin Classifiers
Pages 115 – 132
Year 2000
Editor Smola, A. and Bartlett, P. and Schölkopf, B. and Schuurmans, D.
Publisher MIT Press
Abstract In contrast to the standard machine learning tasks of classification and metric regression we investigate the problem of predicting variables of ordinal scale, a setting referred to as ordinal regression. This problem arises frequently in the social sciences and in information retrieval where human preferences play a major role. Whilst approaches proposed in statistics rely on a probability model of a latent (unobserved) variable we present a distribution independent risk formulation of ordinal regression which allows us to derive a uniform convergence bound. Applying this bound we present a large margin algorithm that is based on a mapping from objects to scalar utility values thus classifying pairs of objects. We give experimental results for an information retrieval task which show that our algorithm outperforms more naive approaches to ordinal regression such as Support Vector Classification and Support Vector Regression in the case of more than two ranks.
Bibtex Type of Publication Selected:structured
Link to publication Download Bibtex entry


Quick Access

Schnellnavigation zur Seite über Nummerneingabe