direkt zum Inhalt springen
direkt zum Hauptnavigationsmenü
Sie sind hier
Search
Institute of Software Engineering and Theoretical Computer ScienceNeural Information Processing
1 | 2 | 3 | 4 | You are at page:5
Order by: Author Year Journal
Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P. and Obermayer, K. (1999). Neural Networks in Economics: Background, Applications and New Developments. Advances in Computational Economics: Computational Techniques for Modelling Learning in Economics. Kluwer Academics, 169 – 196.,
Burger, M. a. G. T. and Obermayer, K. (1998). An Annealed Self-Organizing Map for Source Channel Coding. Advances in Neural Information Processing Systems 10. MIT Press, 430 – 436.,10.1.1.26.9359
Graepel, T., Burger, M. and Obermayer, K. (1998). Self-Organizing Maps: Generalizations and New Optimization Techniques. Neurocomputing, 20, 173 – 190.
Graepel, T. and Obermayer, K. (1998). Fuzzy Topographic Kernel Clustering. Proceedings of the 5th GI Workshop Fuzzy Neuro Systems, 90 – 97.,
Südholt, M., Piepenbrock, C., Obermayer, K. and Pepper, P. (1997). Solving Large Systems of Differential Equations using Convolutions by Transformation. IFIP Working Conference on Algorithmic Languages and Calculi, Strasbourg. Chapman \\& Hall, (1 – 27).,
Burger, M., Graepel, T. and Obermayer, K. (1997). Phase Transitions in Soft Topographic Vector Quantization. Artificial Neural Networks - ICANN 97. Springer-Verlag, 619 – 624.,
Graepel, T., Burger, M. and Obermayer, K. (1997). Deterministic Annealing for Topographic Vector Quantization and Self-Organizing Maps. Proceedings of the Workshop on Self-Organizing Maps - WSOM 97, 345 – 350.,
Graepel, T., Burger, M. and Obermayer, K. (1997). Phase Transitions in Stochastic Self-Organizing Maps. PHYSICAL REVIEW E, 56, 3876 – 3890.
Obermayer, K. (1992). Neural Pattern Formation and Self-Organizing Maps. Annales de Groupe CARNAC 5, 91 – 104.,
Erwin, E., Obermayer, K. and Schulten, K. (1992). Self-Organizing Maps: Ordering, Convergence Properties and Energy Functions. Biological Cybernetics, 67, 47 – 55.
Erwin, E., Obermayer, K. and Schulten, K. (1992). Self-Organizing Maps: Stationary States, Metastability and Convergence Rate. Biological Cybernetics, 67, 35 – 45.
Ritter, H., Obermayer, K. and Rubner, J. (1991). Self-Organizing Maps and Adaptive Filters. Physics of Neural Networks. Springer, 281 – 306.,
Erwin, E., Obermayer, K. and Schulten, K. (1991). Convergence Properties of Self-organizing Maps. Artificial Neural Networks I. North Holland, 409 – 414.,
Go to: