direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Machine Learning

All Publications

N

Graepel, T. and Obermayer, K. (1999). A Self-Organizing Map for Proximity Data. Neural Computation, 11, 139 – 155.


Seo, S. and Obermayer, K. (2004). Self-Organizing Maps and Clustering Methods for Matrix Data. Neural Networks Special Issue, 17, 1211 – 1229.


Graepel, T., Burger, M. and Obermayer, K. (1998). Self-Organizing Maps: Generalizations and New Optimization Techniques. Neurocomputing, 20, 173 – 190.


Tobia, M. J., Guo, R., Schwarze, U., Böhmer, W., Gläscher, J., Finckh, B., Marschner, A., Büchel, C., Obermayer, K. and Sommer, T. (2014). Neural Systems for Choice and Valuation with Counterfactual Learning Signals. NeuroImage, 89, 57-69.


Lohoff, F., Lautenschlager, M., Mohr, J., Ferraro, T., Sander, T. and Gallinat, J. (2008). Association Between Variation in the Vesicular Monoamine Transporter 1 Gene on Chromosome 8p and Anxiety-Related Personality Traits. Neuroscience Letters, 434, 41 – 45.


P

Graepel, T., Burger, M. and Obermayer, K. (1997). Phase Transitions in Stochastic Self-Organizing Maps. PHYSICAL REVIEW E, 56, 3876 – 3890.


Shelton, J. A., Sheikh, A.-S., Bornschein, J., Sterne, P. and Lücke, J. (2015). Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding. PLoS ONE, 10, e0124088.


Boehmer, W., Guo, R. and Obermayer, K. (2016). Non-deterministic Policy Improvement Stabilizes Approximate Reinforcement Learning. Proceedings of the 13th European Workshop on Reinforcement Learning


Liu, C., Xie, S., Xie, X., Duan, X., Wang, W. and Obermayer, K. (2018). Design of a Video Feedback SSVEP-BCI System for Car Control Based on the Improved MUSIC Method. Proceedings of the IEEE 6th International Winter Conference on Brain-Computer Interfaces


S

Shen, Y., Stannat, W. and Obermayer, K. (2013). Risk-sensitive Markov Control Processes. SIAM Journal on Control and Optimization, 51, 3652–3672.


W

Müller, L., Ploner, M., Goerttler, T. and Obermayer, K. (2021). An Interactive Introduction to Model-Agnostic Meta-Learning. Workshop on Visualization for AI Explainability at IEEE VIS


Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions