direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Machine Learning

All Publications

next >> [5]

1991

Ritter, H., Obermayer, K. and Rubner, J. (1991). Self-Organizing Maps and Adaptive Filters [9]. Physics of Neural Networks. Springer, 281 – 306.,


Erwin, E., Obermayer, K. and Schulten, K. (1991). Convergence Properties of Self-organizing Maps [10]. Artificial Neural Networks I. North Holland, 409 – 414.,


1992

Obermayer, K. (1992). Neural Pattern Formation and Self-Organizing Maps [11]. Annales de Groupe CARNAC 5, 91 – 104.,


Erwin, E., Obermayer, K. and Schulten, K. (1992). Self-Organizing Maps: Ordering, Convergence Properties and Energy Functions [12]. Biological Cybernetics, 67, 47 – 55.


Erwin, E., Obermayer, K. and Schulten, K. (1992). Self-Organizing Maps: Stationary States, Metastability and Convergence Rate [13]. Biological Cybernetics, 67, 35 – 45.


1997

Südholt, M., Piepenbrock, C., Obermayer, K. and Pepper, P. (1997). Solving Large Systems of Differential Equations using Convolutions by Transformation [14]. IFIP Working Conference on Algorithmic Languages and Calculi, Strasbourg. Chapman \& Hall, (1 – 27).,


Burger, M., Graepel, T. and Obermayer, K. (1997). Phase Transitions in Soft Topographic Vector Quantization [15]. Artificial Neural Networks - ICANN 97. Springer-Verlag, 619 – 624.,


Graepel, T., Burger, M. and Obermayer, K. (1997). Deterministic Annealing for Topographic Vector Quantization and Self-Organizing Maps [16]. Proceedings of the Workshop on Self-Organizing Maps - WSOM 97, 345 – 350.,


Graepel, T., Burger, M. and Obermayer, K. (1997). Phase Transitions in Stochastic Self-Organizing Maps [17]. PHYSICAL REVIEW E, 56, 3876 – 3890.


1998

Burger, M. a. G. T. and Obermayer, K. (1998). An Annealed Self-Organizing Map for Source Channel Coding [18]. Advances in Neural Information Processing Systems 10. MIT Press, 430 – 436.,10.1.1.26.9359


Graepel, T., Burger, M. and Obermayer, K. (1998). Self-Organizing Maps: Generalizations and New Optimization Techniques [19]. Neurocomputing, 20, 173 – 190.


Graepel, T. and Obermayer, K. (1998). Fuzzy Topographic Kernel Clustering [20]. Proceedings of the 5th GI Workshop Fuzzy Neuro Systems, 90 – 97.,


1999

Schöner, H., Stetter, M., Schiessl, I., Mayhew, J., Lund, J., McLoughlin, N. and Obermayer, K. (1999). Blind Separation of Noisy Mixtures by Iterative Decorrelation. [21]. Proceedings. The Learning Workshop, Snowbird, USA, (1 – 2).,


Graepel, T., Herbrich, R., Bollmann-Sdorra, P. and Obermayer, K. (1999). Classification on Pairwise Proximity Data [22]. Advances in Neural Information Processing Systems 11. MIT Press, 438 – 444.,


Graepel, T., Herbrich, R. and Obermayer, K. (1999). Bayesian transductive classification by maximizing volume in version space [23]. Proceedings of Learning 1999 Conference,


Graepel, T., Herbrich, R., Schoelkopf, B., Smola, A., Bartlett, P., Mueller, K., Obermayer, K. and Williamson, R. (1999). Classification on Proximity Data with LP-Machines [24]. 9th International Conference on Artificial Neural Networks - ICANN99. IEEE, 304 – 309.,10.1049/cp:19991126


Graepel, T. and Obermayer, K. (1999). A Self-Organizing Map for Proximity Data [25]. Neural Computation, 11, 139 – 155.


Hasenjäger, M., Ritter, H. and Obermayer, K. (1999). Active Data Selection for Fuzzy Topographic Mapping of Proximities [26]. Fuzzy-Neuro Systems 1999 - Computational Intelligence, 93–104.,


Hasenjäger, M., Ritter, H. and Obermayer, K. (1999). Active Topographic Mapping of Proximities [27]. 9th International Conference on Artificial Neural Networks - ICANN99. IEEE, 952 – 957.,10.1049/cp:19991235


Hasenjäger, M., Ritter, H. and Obermayer, K. (1999). Active Learning in Self-Organizing Maps [28]. Kohonen Maps. Elsevier, 57–70.,


next >> [33]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008