direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Machine Learning

Journal Publications


Laschos, V., Obermayer, K., Shen, Y. and Stannat, W. (2019). A Fenchel-Moreau-Rockafellar type theorem on the Kantorovich-Wasserstein space with applications in partially observable Markov decision processes. Journal of Mathematical Analysis and Applications


Liu, C., Xie, S., Xie, X., Duan, X., Wang, W. and Obermayer, K. (2018). Design of a Video Feedback SSVEP-BCI System for Car Control Based on the Improved MUSIC Method. Proceedings of the IEEE 6th International Winter Conference on Brain-Computer Interfaces


Trowitzsch, I., Mohr, J., Kashef, Y. and Obermayer, K. (2017). Robust Detection of Environmental Sounds in Binaural Auditory Scenes. IEEE Transactions on Audio Speech and Language Processing, 25, 1344-1356.


Boehmer, W., Guo, R. and Obermayer, K. (2016). Non-deterministic Policy Improvement Stabilizes Approximate Reinforcement Learning. Proceedings of the 13th European Workshop on Reinforcement Learning


Shelton, J. A., Sheikh, A.-S., Bornschein, J., Sterne, P. and Lücke, J. (2015). Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding. PLoS ONE, 10, e0124088.

Hutter, F., Lücke, J. and Schmidt-Thieme, L. (2015). Beyond Manual Tuning of Hyperparameters. KI - Künstliche Intelligenz, 29, 329-337.


Svensson, C.-M., Krusekopf, S., Lücke, J. and Figge, M. T. (2014). Automated Detection of Circulating Tumour Cells With Naive Bayesian Classifiers. Cytometry Part A, 85, 501–511.

Tobia, M. J., Guo, R., Schwarze, U., Böhmer, W., Gläscher, J., Finckh, B., Marschner, A., Büchel, C., Obermayer, K. and Sommer, T. (2014). Neural Systems for Choice and Valuation with Counterfactual Learning Signals. NeuroImage, 89, 57-69.

Sheikh, A.-S., Shelton, J. A. and Lücke, J. (2014). A Truncated EM Approach for Spike-and-Slab Sparse Coding. Journal of Machine Learning Research, 15, 2653–2687.

Shen, Y., Tobia, M. J., Sommer, T. and Obermayer, K. (2014). Risk-sensitive Reinforcement Learning. Neural Computation, 26, 1298-1328.

Dai, Z. and Lücke, J. (2014). Autonomous Document Cleaning – A Generative Approach to Reconstruct Strongly Corrupted Scanned Texts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1950–1962.

Henniges, M., Turner, R. E., Sahani, M., Eggert, J. and Lücke, J. (2014). Efficient Occlusive Components Analysis. Journal of Machine Learning Research, 15, 2689–2722.


Böhmer, W., Grünewälder, S., Shen, Y., Musial, M. and Obermayer, K. (2013). Construction of Approximation Spaces for Reinforcement Learning. Journal of Machine Learning Research, 14, 2067–2118.

Shen, Y., Stannat, W. and Obermayer, K. (2013). Risk-sensitive Markov Control Processes. SIAM Journal on Control and Optimization, 51, 3652–3672.


Böhmer, W., Grünewalder, S., Nickisch, H. and Obermayer, K. (2012). Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis. Machine Learning, 89, 67–86.


Grünwälder, S. and Obermayer, K. (2011). The Optimal Unbiased Extimator and its Relation to LSTD, TD and MC. Machine Learning, 83, 289 – 330.

Jain, B. and Obermayer, K. (2011). Graph Quantization. J. Comput. Vision Image Understanding, 115, 946–961.

Srinivasan, D. and Obermayer, K. (2011). Probabilistic prototype models for attributed graphs. ,

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions