direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Machine Learning

Book Chapters

1991

Ritter, H., Obermayer, K. and Rubner, J. (1991). Self-Organizing Maps and Adaptive Filters. Physics of Neural Networks. Springer, 281 – 306.

Link to original publication

1999

Hasenjäger, M., Ritter, H. and Obermayer, K. (1999). Active Learning in Self-Organizing Maps. Kohonen Maps. Elsevier, 57–70.

Link to publication

Herbrich, R., Keilbach, M., Graepel, T., Bollmann-Sdorra, P. and Obermayer, K. (1999). Neural Networks in Economics: Background, Applications and New Developments. Advances in Computational Economics: Computational Techniques for Modelling Learning in Economics. Kluwer Academics, 169 – 196.

Link to publication

2000

Herbrich, R., Graepel, T. and Obermayer, K. (2000). Large Margin Rank Boundaries for Ordinal Regression. Advances in Large Margin Classifiers. MIT Press, 115 – 132.

Link to publication

2006

Hochreiter, S. and Obermayer, K. (2006). Nonlinear Feature Selection with the Potential Support Vector Machine. Feature Extraction: Foundations and Applications. Springer Berlin Heidelberg, 419 – 438.

Link to original publication

2008

Adiloglu, K., Annies, R., Henrich, F., Paus, A. and Obermayer, K. (2008). Geometrical Approaches to Active Learning. Autonomous Systems – Self-Organization, Management, and Control. Springer Netherlands, 11-19.

Link to publication

2009

Jain, B. and Obermayer, K. (2009). Algorithms for the Sample Mean of Graphs. Lecture Notes in Computer Science, 351 – 359.

Link to original publication

2010

Jain, B. and Obermayer, K. (2010). Elkan’s k-Means Algorithm for Graphs. Advances in Soft Computing. Springer Berlin Heidelberg, 22-32.

Link to publication

2011

Jain, B. and Obermayer, K. (2011). Maximum Likelihood for Gaussians on Graphs. Graph-Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 62-71.

Link to publication

Jain, B. and Obermayer, K. (2011). Generalized Learning Graph Quantization. Graph-Based Representations in Pattern Recognition. Springer Berlin Heidelberg, 122-131.

Link to publication

Böhmer, W., Grünewälder, S., Nickisch, H. and Obermayer, K. (2011). Regularized Sparse Kernel Slow Feature Analysis. Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 235–248.

Link to original publication

2015

Böhmer, W., Springenberg, J. T., Boedecker, J., Riedmiller, M. and Obermayer, K. (2015). Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations. Künstliche Intelligenz. Springer Berlin Heidelberg, 353-362.

Link to original publication

Böhmer, W. and Obermayer, K. (2015). Regression with Linear Factored Functions. Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 119-134.

Link to publication

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions