direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Analysis of Neural Data

Journal Publications

Xie, S., Zhu, F., Obermayer, K., Ritter, P. and Wang, L. (2013). An Efficient Spatial Selective Visual Attention Pattern Recognition Method Based on Joint Short SSVEP. ,10.1109/IJCNN.2013.6706872


A

Seo, S., Beck, A., Matthis, C., Genauck, A., Banaschewski, T., Bokde, A., Bromberg, U., Büchel, C., Quinlan, E., Flor, H., Frouin, V., Garavan, H., Gowland, P., Ittermann, B., Martinot, J., Martinot, M., Nees, F., Orfanos, D., Poustka, L., Hohmann, S., Froehner, J., Smolka, M., Walter, H., Whelan, R., Desrivieres, S., Heinz, A., Schumann, G. and Obermayer, K. (2019). Risk Profiles for Heavy Drinking in Adolescence: Differential Effects of Gender. Addiction Biology, 24, 787-801.


Seo, S., Mohr, J., Beck, A., Wüstenberg, T., Heinz, A. and Obermayer, K. (2015). Predicting the future relapse of alcohol-dependent patients from structural and functional brain images. Addiction Biology, 20, 1042-1055.


Spanagel, R., Durstewitz, D., Hansson, A., Heinz, A., Kiefer, F., Köhr, G., Matthäus, F., Nöthen, M. M., Noori, H. R., Obermayer, K., Rietschel, M., Schloss, P., Scholz, H., Schumann, G., Smolka, M., Sommer, W., Vengeliene, V., Walter, H., Wurst, W., Zimmermann, U. S., Group, A. G. R., Stringer, S., Smits, Y. and Derks, E. M. (2013). A systems medicine research approach for studying alcohol addiction. Addiction Biology, 18, 883–896.


B

Huys, Q., Deserno, L., Obermayer, K., Schlagenhauf, F. and Heinz, A. (2016). Model-free temporal-difference learning and dopamine in alcohol dependence: examining concepts from theory and animals in human imaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 401 - 410.


C

Koren, V., Andrei, A., Hu, M., Dragol, V. and Obermayer, K. (2020). Pair-wise Synchrony and Correlations Depend on the Structure of the Population Code in Visual Cortex. Cell Reports, 2020


Tobia, M. J., Guo, R., Gläscher, J., Schwarze, U., Brassen, S., Büchel, C., Obermayer, K. and Sommer, T. (2016). Altered behavioral and neural responsiveness to counterfactual gains in the elderly. Cognitive, Affective, & Behavioral Neuroscience, 457-472.


E

Natora, M. and Obermayer, K. (2011). An Unsupervised and Drift-adaptive Spike Detection Algorithm Based on Hybrid Blind Beamforming. EURASIP J. Adv. Signal Processing 2011, 2011


F

Dimulescu, C., Gareayaghi, S., Kamp, F., Fromm, S., K., O. and Metzner, C. (2021). Structural Differences between Healthy Subjects and Patients with Schizophrenia and Schizoaffective Disorder: A Graph and Control Theoretical Perspective. Front. Psychiatry, 2021


Pröpper, R. and Obermayer, K. (2013). Spyke Viewer: a flexible and extensible platform for electrophysiological data analysis. Frontiers in Neuroinformatics, 7, 1–10.


Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichman, F. A. and Obermayer, K. (2016). BOiS - Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors. Frontiers in Psychology, 7


Meyer, R. and Obermayer, K. (2016). pypet: A Python Toolkit for Data Management of Parameter Explorations. Frontiers Neuroinformatics, 10


I

Dima, A., Scholz, M. and Obermayer, K. (2002). Automatic Segmentation and Skeletonization of Neurons from Confocal Microscopy Images based on the 3D Wavelet Transform. IEEE Trans. on Image Proc., 11, 790 – 801.


Schießl, I., Stetter, M., Mayhew, J., McLoughlin, N., Lund, J. and Obermayer, K. (2000). Blind Signal Separation from Optical Imaging Recordings with Extended Spatial Decorrelation. IEEE Transactions on Biomedical Engineering, 47, 573 – 577.


Dima, A., Scholz, M. and Obermayer, K. (2003). Automatic Segmentation and Skeletonization of Neurons from Confocal Microscopy Images Based on the 3-D Wavelet Transform. IEEE TRANSACTIONS ON IMAGE PROCESSING, 11, 790-801.


J

Mohr, J., Hess, A., Scholz, M. and Obermayer, K. (2004). A Method for the Automatic Segmentation Autoradiographic Image Stacks and Spatial Normalization of Functional Cortical Activity Data. J. Neurosci. Methods, 134, 45 – 58.


Hiesinger, P., Scholz, M., Meinertzhagen, I., Fischbach, K.-F. and Obermayer, K. (2001). Visualization of Synaptic Markers in the Optic Neuropils of Drosophila Using a New Constrained Deconvolution Method. Journal of Comparative Neurology, 429, 277 – 288.


Franke, F., Quiroga, R. Q., Hierlemann, A. and Obermayer, K. (2015). Bayes optimal template matching for spike sorting – combining fisher discriminant analysis with optimal filtering. Journal of Computational Neuroscience, 38, 439-459.


Franke, F., Natora, M., Boucsein, C., Munk, M. and Obermayer, K. (2010). An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes. Journal of Computional Neuroscience, 127 – 148.


Dima, A., Scholz, M. and Obermayer, K. (2003). Automatic 3D-Graph Construction of Nerve Cells from Confocal Microscopy Scans. Journal of Electronic Imaging, 12, 134 – 150.


Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions