direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

All Publications

Graph Quantization
Citation key Jain2011c
Author Jain, B. and Obermayer, K.
Pages 946–961
Year 2011
Journal J. Comput. Vision Image Understanding
Volume 115
Abstract Vector quantization(VQ) is a lossy data compression technique from signal processing, which is restricted to feature vectors and therefore inapplicable for combinatorial structures. This contribution presents a theoretical foundation of graph quantization (GQ) that extends VQ to the domain of attributed graphs. We present the necessary Lloyd-Max conditions for optimality of a graph quantizer and consistency results for optimal GQ design based on empirical distortion measures and stochastic optimization. These results statistically justify existing clustering algorithms in the domain of graphs. The proposed approach provides a template of how to link structural pattern recognition methods other than GQ to statistical pattern recognition.
Link to original publication [1] Download Bibtex entry [2]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008