direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

All Publications


Shelton, J. A., Sheikh, A.-S., Bornschein, J., Sterne, P. and Lücke, J. (2015). Nonlinear Spike-And-Slab Sparse Coding for Interpretable Image Encoding. PLoS ONE, 10, e0124088.

Guggenmos, M., Rothkirch, M., Obermayer, K., Haynes, J. D. and Sterzer, P. (2015). A Hippocampal Signature of Perceptual Learning in Object Recognition. Journal of Cognitive Neuroscience, 27, 787–797.

Hutter, F., Lücke, J. and Schmidt-Thieme, L. (2015). Beyond Manual Tuning of Hyperparameters. KI - Künstliche Intelligenz, 29, 329-337.

Kneer, F., Obermayer, K. and Dahlem, M. A. (2015). Analyzing critical propagation in a reaction-diffusion-advection model using unstable slow waves. The European Physical Journal E, 38

Böhmer, W., Springenberg, J. T., Boedecker, J., Riedmiller, M. and Obermayer, K. (2015). Autonomous Learning of State Representations for Control: An Emerging Field Aims to Autonomously Learn State Representations for Reinforcement Learning Agents from Their Real-World Sensor Observations. Künstliche Intelligenz. Springer Berlin Heidelberg, 353-362.,10.1007/s13218-015-0356-1

Schmidt, S., Scholz, M., Haberbosch, L., Mante, A., Obermayer, K. and Brandt, S. A. (2015). P273: Fast induction of alpha entrainment with bandwidth confined electric and photic stimulation.. Clinical Neurophysiology, 125, S122.

Böhmer, W. and Obermayer, K. (2015). Regression with Linear Factored Functions. Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 119-134.,10.1007/978-3-319-23528-8_8

Franke, F., Pröpper, R., Alle, H., Meier, P., Geiger, J. R. P., Obermayer, K. and Munk, M. H. J. (2015). Spike sorting of synchronous spikes from local neuron ensembles. Journal of Neurophysiology, 114, 2535–2549.

Franke, F., Quiroga, R. Q., Hierlemann, A. and Obermayer, K. (2015). Bayes optimal template matching for spike sorting – combining fisher discriminant analysis with optimal filtering. Journal of Computational Neuroscience, 38, 439-459.


Mohr, J., Seo, S. and Obermayer, K. (2014). A classifier-based association test for imbalanced data derived from prediction theory. Neural Networks (IJCNN), 2014 International Joint Conference on, 487-493.,10.1109/IJCNN.2014.6889547

Svensson, C.-M., Krusekopf, S., Lücke, J. and Figge, M. T. (2014). Automated Detection of Circulating Tumour Cells With Naive Bayesian Classifiers. Cytometry Part A, 85, 501–511.

Ladenbauer, J., Augustin, M. and Obermayer, K. (2014). How Adaptation Currents Change Threshold, Gain and Variability of Neuronal Spiking. Journal of Neurophysiology, 111, 939–953.

Mohr, J., Park, J.-H. and Obermayer, K. (2014). A computer vision system for rapid search inspired by surface-based attention mechanisms from human perception. Neural Networks, 60, 182 - 193.

Tobia, M. J., Guo, R., Schwarze, U., Böhmer, W., Gläscher, J., Finckh, B., Marschner, A., Büchel, C., Obermayer, K. and Sommer, T. (2014). Neural Systems for Choice and Valuation with Counterfactual Learning Signals. NeuroImage, 89, 57-69.

Sheikh, A.-S., Shelton, J. A. and Lücke, J. (2014). A Truncated EM Approach for Spike-and-Slab Sparse Coding. Journal of Machine Learning Research, 15, 2653–2687.

Shen, Y., Huang, R., Yan, C. and Obermayer, K. (2014). Risk-Averse Reinforcement Learning for Algorithmic Trading. 2014 IEEE Computational Intelligence for Financial Engineering and Economics, 391-398.,10.1109/CIFEr.2014.6924100

Shen, Y., Stannat, W. and Obermayer, K. (2014). A Unified Framework for Risk-sensitive Markov Control Processes. 53rd IEEE Conference on Decision and Control, 1073-1078.,10.1109/CDC.2014.7039524

Shen, Y., Tobia, M. J., Sommer, T. and Obermayer, K. (2014). Risk-sensitive Reinforcement Learning. Neural Computation, 26, 1298-1328.

Tobia, M. J., Guo, R., Schwarze, U., Böhmer, W., Gläscher, J., Finckh, B., Marschner, A., Büchel, C., Obermayer, K. and Sommer, T. (2014). Counterfactual Q-learning in a Strategic Sequential Investment Task: Serotonergic and Dopaminergic Involvement in the Medial Prefrontal Cortex and Striatum. Neuroimage

Dai, Z. and Lücke, J. (2014). Autonomous Document Cleaning – A Generative Approach to Reconstruct Strongly Corrupted Scanned Texts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 1950–1962.

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions