direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

All Publications

I

Obermayer, K., Ritter, H. and Schulten, K. (1992). A Model for the Development of the Spatial Structure of Retinotopic Maps and Orientation Columns. IEICE T Fune, 75A, 537 – 545.


Klose, C., Seo, S. and Obermayer, K. (2005). A New Clustering Approach for Partioning Directional Data. Int. J. Rock Mech. Mining Sci., 42, 315 – 321.


Natora, M., Franke, F. and Obermayer, K. (2009). Optimal Convolutive Filters for Real-Time Detection and Arrival Time Estimation of Transient Signals. Proceedings of World Academy of Science, Engineering and Technology. WASET, 235 – 240.,


Garg, A., Obermayer, K. and Bhaumik, B. (2005). Development of Feedforward Receptive Field Structure of a Simple Cell and its Contribution to the Orientation Selectivity: A Modeling Study. International Journal of Neural Systems, 15, 55 – 70.


J

Schwetz, I., Gruhler, G. and Obermayer, K. (2006). A Cross-Spectrum Weighting Algorithm for Speech Enhancement and Array Processing: Combining Locating and Long-Term Statistics. J. Acoust. Soc. Amer., 119, 952 – 964.


Jain, B. and Obermayer, K. (2011). Graph Quantization. J. Comput. Vision Image Understanding, 115, 946–961.


Mohr, J., Hess, A., Scholz, M. and Obermayer, K. (2004). A Method for the Automatic Segmentation Autoradiographic Image Stacks and Spatial Normalization of Functional Cortical Activity Data. J. Neurosci. Methods, 134, 45 – 58.


Adiloglu, K., Noll, T. and Obermayer, K. (2006). A Paradigmatic Approach to Extract the Melodic Structure of a Musical Piece. Journal New Music Research, 35, 221 – 236.


Mohr, J., Jain, B. and Obermayer, K. (2008). Molecule Kernels: A Descriptor- and Alignment-Free QSAR Approach. Journal of Chemical Information and Modeling, 48, 1868 – 1881.


Mohr, J., Jain, B., Sutter, A., Laak, A., Steger-Hartmann, T., Heinrich, H. and Obermayer, K. (2010). A Maximum Common Subgraph Kernel Method for Predicting the Chromosome Aberration Test. Journal of Chemical Information and Modelling, 50, 1821–1838.


Guggenmos, M., Rothkirch, M., Obermayer, K., Haynes, J. D. and Sterzer, P. (2015). A Hippocampal Signature of Perceptual Learning in Object Recognition. Journal of Cognitive Neuroscience, 27, 787–797.


Hiesinger, P., Scholz, M., Meinertzhagen, I., Fischbach, K.-F. and Obermayer, K. (2001). Visualization of Synaptic Markers in the Optic Neuropils of Drosophila Using a New Constrained Deconvolution Method. Journal of Comparative Neurology, 429, 277 – 288.


Franke, F., Quiroga, R. Q., Hierlemann, A. and Obermayer, K. (2015). Bayes optimal template matching for spike sorting – combining fisher discriminant analysis with optimal filtering. Journal of Computational Neuroscience, 38, 439-459.


Franke, F., Natora, M., Boucsein, C., Munk, M. and Obermayer, K. (2010). An Online Spike Detection and Spike Classification Algorithm Capable of Instantaneous Resolution of Overlapping Spikes. Journal of Computional Neuroscience, 127 – 148.


Dima, A., Scholz, M. and Obermayer, K. (2003). Automatic 3D-Graph Construction of Nerve Cells from Confocal Microscopy Scans. Journal of Electronic Imaging, 12, 134 – 150.


Jain, B. and Obermayer, K. (2009). Structure Spaces. Journal of Machine Learning Research, 10, 2667 – 2714.


Sheikh, A.-S., Shelton, J. A. and Lücke, J. (2014). A Truncated EM Approach for Spike-and-Slab Sparse Coding. Journal of Machine Learning Research, 15, 2653–2687.


Böhmer, W., Grünewälder, S., Shen, Y., Musial, M. and Obermayer, K. (2013). Construction of Approximation Spaces for Reinforcement Learning. Journal of Machine Learning Research, 14, 2067–2118.


Henniges, M., Turner, R. E., Sahani, M., Eggert, J. and Lücke, J. (2014). Efficient Occlusive Components Analysis. Journal of Machine Learning Research, 15, 2689–2722.


Henrich, F. and Obermayer, K. (2008). Active Learning by Spherical Subdivision. Journal of Machine Learning Research, 9, 105 – 130.


Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions