TU Berlin

Neuronale InformationsverarbeitungNeuronale Informationsverarbeitung

Neuronale Informationsverarbeitung

Inhalt

zur Navigation

Neuronale Informationsverarbeitung

Wir beschäftigen uns mit den Grundlagen der Informationsverarbeitung in biologischen Systemen. Einerseits möchten wir die Funktionsmechanismen unseres Gehirns verstehen, andererseits machen wir uns die Strategien biologischer Systeme in Anwendungen maschinellen Lernens zu Nutze. Unsere Forschungsinteressen sind thematisch in drei Bereiche unterteilt.

Modelle neuronaler Systeme:

Lupe

In Zusammenarbeit mit Neurobiologen und Klinikern erforschen wir die Mechanismen der Informationsverarbeitung im visuellen System. Die Forschungsthemen behinhalten: Kortikale Dynamik, die Repräsentation visueller Information, Adaptation und Plastizität, sowie die Rolle von Rückkopplung. Seit jüngerer Zeit beschäftigen wir uns mit dem Zusammenhang von Wahrnehmung und kognitiven Funktionen. Hier untersuchen wir mathematische Modelle der Entscheidungsfindung in unbekannten Umgebungen hinsichtlich der Frage, wie die zugrunde liegenden Prozesse mit Wahrnehmung und Gedächtnis wechselwirken.

Maschinelles Lernen und neuronale Netze:

Lupe

Hier befassen wir uns mit dem künstlichen Erlernen von Zusammenhängen anhand von Beispielen, um Vorhersagen und Entscheidungen zu treffen. Die Forschungsthemen umfassen: Lernen geeigneter Darstellungen/Abbildungen, aktive und halbüberwachte Lernverfahren, sowie Prototyp-bezogene Methoden. Inspiriert durch die Modell-basierte Erforschung jener Vorgänge, welche für die Entscheidungsfindung eine zentrale Rolle spielen, haben wir begonnen Belohnungs- bzw. Bestrafungs-Lernen zu untersuchen und erweitern. Zusammen mit Spezialisten aus verschiedenen Anwendungsbereichen setzen wir maschinelles Lernen etwa zur Wiedergewinnung von Informationen ein, für maschinelles Sehen oder in der Chemoinformatik.

Analyse neuronaler Daten:

Lupe

Hier wenden wir maschinelles Lernen und statistische Verfahren zur Analyse multivariater biometrischer Daten an, insbesondere Daten, welche eine Grundlage für unsere computergestützten Studien neuronaler Systeme bilden. Die Forschungsthemen variieren und beinhalten gegenwärtig Spike-sorting und die Analyse von Multi-Tetroden Aufnahmen, Konfokalmikroskopie und 3D-Rekonstruktionsmethoden, sowie die Analyse von Daten bildgebender Verfahren. Seit Kurzem beschäftigen wir uns mit der Analyse multimodaler Daten und korrelieren beispielsweise anatomische, genetische, und Bilddatensätze.

Ausgewählte Publikationen

An Interactive Introduction to Model-Agnostic Meta-Learning
Zitatschlüssel Mueller20210
Autor Müller, L. and Ploner, M. and Goerttler, T. and Obermayer, K.
Jahr 2021
Journal Workshop on Visualization for AI Explainability at IEEE VIS
Zusammenfassung In this article, we give an interactive introduction to model-agnostic meta-learning (MAML), a well-establish method in the area of meta-learning. Meta-learning is a research field that attempts to equip conventional machine learning architectures with the power to gain meta-knowledge about a range of tasks to solve problems like the one above on a human level of accuracy.
Typ der Publikation Selected:structured selected:publications selected:main selected:quantify
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Nach oben

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe