TU Berlin

Neuronale InformationsverarbeitungNeuronale Informationsverarbeitung

Neuronale Informationsverarbeitung

Inhalt

zur Navigation

Neuronale Informationsverarbeitung

Wir beschäftigen uns mit den Grundlagen der Informationsverarbeitung in biologischen Systemen. Einerseits möchten wir die Funktionsmechanismen unseres Gehirns verstehen, andererseits machen wir uns die Strategien biologischer Systeme in Anwendungen maschinellen Lernens zu Nutze. Unsere Forschungsinteressen sind thematisch in drei Bereiche unterteilt.

Modelle neuronaler Systeme:

Lupe

In Zusammenarbeit mit Neurobiologen und Klinikern erforschen wir die Mechanismen der Informationsverarbeitung im visuellen System. Die Forschungsthemen behinhalten: Kortikale Dynamik, die Repräsentation visueller Information, Adaptation und Plastizität, sowie die Rolle von Rückkopplung. Seit jüngerer Zeit beschäftigen wir uns mit dem Zusammenhang von Wahrnehmung und kognitiven Funktionen. Hier untersuchen wir mathematische Modelle der Entscheidungsfindung in unbekannten Umgebungen hinsichtlich der Frage, wie die zugrunde liegenden Prozesse mit Wahrnehmung und Gedächtnis wechselwirken.

Maschinelles Lernen und neuronale Netze:

Lupe

Hier befassen wir uns mit dem künstlichen Erlernen von Zusammenhängen anhand von Beispielen, um Vorhersagen und Entscheidungen zu treffen. Die Forschungsthemen umfassen: Lernen geeigneter Darstellungen/Abbildungen, aktive und halbüberwachte Lernverfahren, sowie Prototyp-bezogene Methoden. Inspiriert durch die Modell-basierte Erforschung jener Vorgänge, welche für die Entscheidungsfindung eine zentrale Rolle spielen, haben wir begonnen Belohnungs- bzw. Bestrafungs-Lernen zu untersuchen und erweitern. Zusammen mit Spezialisten aus verschiedenen Anwendungsbereichen setzen wir maschinelles Lernen etwa zur Wiedergewinnung von Informationen ein, für maschinelles Sehen oder in der Chemoinformatik.

Analyse neuronaler Daten:

Lupe

Hier wenden wir maschinelles Lernen und statistische Verfahren zur Analyse multivariater biometrischer Daten an, insbesondere Daten, welche eine Grundlage für unsere computergestützten Studien neuronaler Systeme bilden. Die Forschungsthemen variieren und beinhalten gegenwärtig Spike-sorting und die Analyse von Multi-Tetroden Aufnahmen, Konfokalmikroskopie und 3D-Rekonstruktionsmethoden, sowie die Analyse von Daten bildgebender Verfahren. Seit Kurzem beschäftigen wir uns mit der Analyse multimodaler Daten und korrelieren beispielsweise anatomische, genetische, und Bilddatensätze.

Ausgewählte Publikationen

Cortical Reorganization Consistent with Spike Timing- but not Correlation-Dependent Plasticity
Zitatschlüssel Young2007a
Autor Young, J. and Waleszczyk, W. and Wang, C. and Calford, M. and Dreher, B. and Obermayer, K.
Seiten 887 – 889
Jahr 2007
DOI 10.1038/nn1913
Journal Nat. Neurosci.
Jahrgang 10
Zusammenfassung The receptive fields of neurons in primary visual cortex that are inactivated by retinal damage are known to 'shift' to nondamaged retinal locations, seemingly due to the plasticity of intracortical connections. We have observed in cats that these shifts occur in a pattern that is highly convergent, even among receptive fields that are separated by large distances before inactivation. Here we show, using a computational model of primary visual cortex, that the observed convergent shifts are inconsistent with the common assumption that the underlying intracortical connection plasticity is dependent on the temporal correlation of pre- and postsynaptic action potentials. The shifts are, however, consistent with the hypothesis that this plasticity is dependent on the temporal order of pre- and postsynaptic action potentials. This convergent reorganization seems to require increased neuronal gain, revealing a mechanism that networks may use to selectively facilitate the didactic transfer of neuronal response properties.
Typ der Publikation Selected:main selected:adaptation selected:publications
Link zur Originalpublikation Download Bibtex Eintrag

Nach oben

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe