TU Berlin

Neuronale InformationsverarbeitungNeuronale Informationsverarbeitung

Neuronale Informationsverarbeitung

Inhalt

zur Navigation

Neuronale Informationsverarbeitung

Wir beschäftigen uns mit den Grundlagen der Informationsverarbeitung in biologischen Systemen. Einerseits möchten wir die Funktionsmechanismen unseres Gehirns verstehen, andererseits machen wir uns die Strategien biologischer Systeme in Anwendungen maschinellen Lernens zu Nutze. Unsere Forschungsinteressen sind thematisch in drei Bereiche unterteilt.

Modelle neuronaler Systeme:

Lupe

In Zusammenarbeit mit Neurobiologen und Klinikern erforschen wir die Mechanismen der Informationsverarbeitung im visuellen System. Die Forschungsthemen behinhalten: Kortikale Dynamik, die Repräsentation visueller Information, Adaptation und Plastizität, sowie die Rolle von Rückkopplung. Seit jüngerer Zeit beschäftigen wir uns mit dem Zusammenhang von Wahrnehmung und kognitiven Funktionen. Hier untersuchen wir mathematische Modelle der Entscheidungsfindung in unbekannten Umgebungen hinsichtlich der Frage, wie die zugrunde liegenden Prozesse mit Wahrnehmung und Gedächtnis wechselwirken.

Maschinelles Lernen und neuronale Netze:

Lupe

Hier befassen wir uns mit dem künstlichen Erlernen von Zusammenhängen anhand von Beispielen, um Vorhersagen und Entscheidungen zu treffen. Die Forschungsthemen umfassen: Lernen geeigneter Darstellungen/Abbildungen, aktive und halbüberwachte Lernverfahren, sowie Prototyp-bezogene Methoden. Inspiriert durch die Modell-basierte Erforschung jener Vorgänge, welche für die Entscheidungsfindung eine zentrale Rolle spielen, haben wir begonnen Belohnungs- bzw. Bestrafungs-Lernen zu untersuchen und erweitern. Zusammen mit Spezialisten aus verschiedenen Anwendungsbereichen setzen wir maschinelles Lernen etwa zur Wiedergewinnung von Informationen ein, für maschinelles Sehen oder in der Chemoinformatik.

Analyse neuronaler Daten:

Lupe

Hier wenden wir maschinelles Lernen und statistische Verfahren zur Analyse multivariater biometrischer Daten an, insbesondere Daten, welche eine Grundlage für unsere computergestützten Studien neuronaler Systeme bilden. Die Forschungsthemen variieren und beinhalten gegenwärtig Spike-sorting und die Analyse von Multi-Tetroden Aufnahmen, Konfokalmikroskopie und 3D-Rekonstruktionsmethoden, sowie die Analyse von Daten bildgebender Verfahren. Seit Kurzem beschäftigen wir uns mit der Analyse multimodaler Daten und korrelieren beispielsweise anatomische, genetische, und Bilddatensätze.

Ausgewählte Publikationen

Support Vector Machines for Dyadic Data
Zitatschlüssel Hochreiter2006b
Autor Hochreiter, J. and Obermayer, K.
Seiten 1472 – 1510
Jahr 2006
DOI 10.1162/neco.2006.18.6.1472
Journal Neural Comput.
Jahrgang 18
Zusammenfassung We describe a new technique for the analysis of dyadic data, where two sets of objects (\"row\" and \"column\" objects) are characterized by a matrix of numerical values which describe their mutual relationships. The new technique, called \"Potential Support Vector Machine\" (P-SVM), is a large-margin method for the construction of classifiers and regression functions for the \"column\" objects. Contrary to standard support vector machine approaches, the P-SVM minimizes a scale-invariant capacity measure and requires a new set of constraints. As a result, the P-SVM method leads to a usually sparse expansion of the classification and regression functions in terms of the \"row\" rather than the \"column\" objects and can handle data and kernel matrices which are neither positive definite nor square. We then describe two complementary regularization schemes. The first scheme improves generalization performance for classification and regression tasks, the second scheme leads to the selection of a small, informative set of \"row\" \"support\" objects and can be applied to feature selection. Benchmarks for classification, regression, and feature selection tasks are performed with toy data as well as with several real world data sets. The results show, that the new method is at least competitive with but often performs better than the benchmarked standard methods for standard vectorial as well as for true dyadic data sets. In addition, a theoretical justification is provided for the new approach.
Typ der Publikation Selected:main selected:structured selected:publications
Link zur Publikation Link zur Originalpublikation Download Bibtex Eintrag

Nach oben

Navigation

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe