direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Neuronale Informationsverarbeitung

Wir beschäftigen uns mit den Grundlagen der Informationsverarbeitung in biologischen Systemen. Einerseits möchten wir die Funktionsmechanismen unseres Gehirns verstehen, andererseits machen wir uns die Strategien biologischer Systeme in Anwendungen maschinellen Lernens zu Nutze. Unsere Forschungsinteressen sind thematisch in drei Bereiche unterteilt.

Modelle neuronaler Systeme:

Lupe

In Zusammenarbeit mit Neurobiologen und Klinikern erforschen wir die Mechanismen der Informationsverarbeitung im visuellen System. Die Forschungsthemen behinhalten: Kortikale Dynamik, die Repräsentation visueller Information, Adaptation und Plastizität, sowie die Rolle von Rückkopplung. Seit jüngerer Zeit beschäftigen wir uns mit dem Zusammenhang von Wahrnehmung und kognitiven Funktionen. Hier untersuchen wir mathematische Modelle der Entscheidungsfindung in unbekannten Umgebungen hinsichtlich der Frage, wie die zugrunde liegenden Prozesse mit Wahrnehmung und Gedächtnis wechselwirken.

Maschinelles Lernen und neuronale Netze:

Lupe

Hier befassen wir uns mit dem künstlichen Erlernen von Zusammenhängen anhand von Beispielen, um Vorhersagen und Entscheidungen zu treffen. Die Forschungsthemen umfassen: Lernen geeigneter Darstellungen/Abbildungen, aktive und halbüberwachte Lernverfahren, sowie Prototyp-bezogene Methoden. Inspiriert durch die Modell-basierte Erforschung jener Vorgänge, welche für die Entscheidungsfindung eine zentrale Rolle spielen, haben wir begonnen Belohnungs- bzw. Bestrafungs-Lernen zu untersuchen und erweitern. Zusammen mit Spezialisten aus verschiedenen Anwendungsbereichen setzen wir maschinelles Lernen etwa zur Wiedergewinnung von Informationen ein, für maschinelles Sehen oder in der Chemoinformatik.

Analyse neuronaler Daten:

Lupe

Hier wenden wir maschinelles Lernen und statistische Verfahren zur Analyse multivariater biometrischer Daten an, insbesondere Daten, welche eine Grundlage für unsere computergestützten Studien neuronaler Systeme bilden. Die Forschungsthemen variieren und beinhalten gegenwärtig Spike-sorting und die Analyse von Multi-Tetroden Aufnahmen, Konfokalmikroskopie und 3D-Rekonstruktionsmethoden, sowie die Analyse von Daten bildgebender Verfahren. Seit Kurzem beschäftigen wir uns mit der Analyse multimodaler Daten und korrelieren beispielsweise anatomische, genetische, und Bilddatensätze.

Ausgewählte Publikationen

A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts
Zitatschlüssel Onken20120
Autor Onken, A. and Dragoi, V. and Obermayer, K.
Jahr 2012
DOI 10.1371/journal.pcbi.1002539
Journal PLoS Computational Biology
Jahrgang 8
Zusammenfassung Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly.
Typ der Publikation Selected:main selected:spikes selected:publications
Link zur Publikation Download Bibtex Eintrag

Nach oben