direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Neuronale Informationsverarbeitung

Wir beschäftigen uns mit den Grundlagen der Informationsverarbeitung in biologischen Systemen. Einerseits möchten wir die Funktionsmechanismen unseres Gehirns verstehen, andererseits machen wir uns die Strategien biologischer Systeme in Anwendungen maschinellen Lernens zu Nutze. Unsere Forschungsinteressen sind thematisch in drei Bereiche unterteilt.

Modelle neuronaler Systeme:

Lupe

In Zusammenarbeit mit Neurobiologen und Klinikern erforschen wir die Mechanismen der Informationsverarbeitung im visuellen System. Die Forschungsthemen behinhalten: Kortikale Dynamik, die Repräsentation visueller Information, Adaptation und Plastizität, sowie die Rolle von Rückkopplung. Seit jüngerer Zeit beschäftigen wir uns mit dem Zusammenhang von Wahrnehmung und kognitiven Funktionen. Hier untersuchen wir mathematische Modelle der Entscheidungsfindung in unbekannten Umgebungen hinsichtlich der Frage, wie die zugrunde liegenden Prozesse mit Wahrnehmung und Gedächtnis wechselwirken.

Maschinelles Lernen und neuronale Netze:

Lupe

Hier befassen wir uns mit dem künstlichen Erlernen von Zusammenhängen anhand von Beispielen, um Vorhersagen und Entscheidungen zu treffen. Die Forschungsthemen umfassen: Lernen geeigneter Darstellungen/Abbildungen, aktive und halbüberwachte Lernverfahren, sowie Prototyp-bezogene Methoden. Inspiriert durch die Modell-basierte Erforschung jener Vorgänge, welche für die Entscheidungsfindung eine zentrale Rolle spielen, haben wir begonnen Belohnungs- bzw. Bestrafungs-Lernen zu untersuchen und erweitern. Zusammen mit Spezialisten aus verschiedenen Anwendungsbereichen setzen wir maschinelles Lernen etwa zur Wiedergewinnung von Informationen ein, für maschinelles Sehen oder in der Chemoinformatik.

Analyse neuronaler Daten:

Lupe

Hier wenden wir maschinelles Lernen und statistische Verfahren zur Analyse multivariater biometrischer Daten an, insbesondere Daten, welche eine Grundlage für unsere computergestützten Studien neuronaler Systeme bilden. Die Forschungsthemen variieren und beinhalten gegenwärtig Spike-sorting und die Analyse von Multi-Tetroden Aufnahmen, Konfokalmikroskopie und 3D-Rekonstruktionsmethoden, sowie die Analyse von Daten bildgebender Verfahren. Seit Kurzem beschäftigen wir uns mit der Analyse multimodaler Daten und korrelieren beispielsweise anatomische, genetische, und Bilddatensätze.

Ausgewählte Publikationen

Predicting the future relapse of alcohol-dependent patients from structural and functional brain images
Zitatschlüssel Seo2015a
Autor Seo, S. and Mohr, J. and Beck, A. and Wüstenberg, T. and Heinz, A. and Obermayer, K.
Seiten 1042-1055
Jahr 2015
ISSN 1369-1600
DOI 10.1111/adb.12302
Journal Addiction Biology
Jahrgang 20
Nummer 6
Monat November
Herausgeber Wiley-Blackwell
Zusammenfassung In alcohol dependence, individual prediction of treatment outcome based on neuroimaging endophenotypes can help to tailor individual therapeutic offers to patients depending on their relapse risk. We built a prediction model for prospective relapse of alcohol-dependent patients that combines structural and functional brain images derived from an experiment in which 46 subjects were exposed to alcohol-related cues. The patient group had been subdivided post hoc regarding relapse behavior defined as a consumption of more than 60 g alcohol for male or more than 40 g alcohol for female patients on one occasion during the 3-month assessment period (16 abstainers and 30 relapsers). Naïve Bayes, support vector machines and learning vector quantization were used to infer prediction models for relapse based on the mean and maximum values of gray matter volume and brain responses on alcohol-related cues within a priori defined regions of interest. Model performance was estimated by leave-one-out cross-validation. Learning vector quantization yielded the model with the highest balanced accuracy (79.4 percent, p < 0.0001; 90 percent sensitivity, 68.8 percent specificity). The most informative individual predictors were functional brain activation features in the right and left ventral tegmental areas and the right ventral striatum, as well as gray matter volume features in left orbitofrontal cortex and right medial prefrontal cortex. In contrast, the best pure clinical model reached only chance-level accuracy (61.3 percent). Our results indicate that an individual prediction of future relapse from imaging measurement outperforms prediction from clinical measurements. The approach may help to target specific interventions at different risk groups.
Typ der Publikation Selected:main selected:publications
Link zur Publikation Download Bibtex Eintrag

Nach oben