direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Neural Information Processing Group

We are concerned with the principles underlying information processing in biological systems. On the one hand we want to understand how the brain computes, on the other hand we want to utilize the strategies employed by biological systems for machine learning applications. Our research interests cover three thematic areas.

Models of Neuronal Systems:


In collaboration with neurobiologists and clinicians we study how the visual system processes visual information. Research topics include: cortical dynamics, the representation of visual information, adaptation and plasticity, and the role of feedback. More recently we became interested in how perception is linked to cognitive function, and we began to study computational models of decision making in uncertain environments, and how those processes interact with perception and memory.

Machine Learning and Neural Networks:


Here we investigate how machines can learn from examples in order to predict and (more recently) act. Research topics include the learning of proper representations, active and semisupervised learning schemes, and prototype-based methods. Motivated by the model-based analysis of decision making in humans we also became interested in reinforcement learning schemes and how these methods can be extended to cope with multi-objective cost functions. In collaboration with colleagues from the application domains, machine learning methods are applied to different problems ranging from computer vision, information retrieval, to chemoinformatics.

Analysis of Neural Data:


Here we are interested to apply machine learning and statistical methods to the analysis of multivariate biomedical data, in particular to data which form the basis of our computational studies of neural systems. Research topics vary and currently include spike-sorting and the analysis of multi-tetrode recordings, confocal microscopy and 3D-reconstruction techniques, and the analysis of imaging data. Recently we became interested in the analysis of multimodal data, for example, correlating anatomical, imaging, and genetic data.

Selected Publications

Adaptation Controls Synchrony and Cluster States of Coupled Threshold-Model Neurons
Citation key Ladenbauer2013a
Author Ladenbauer, J. and Lehnert, J. and Rankoohi, H. and Dahms, T. and Schöll, E. and Obermayer, K.
Pages 042713
Year 2013
DOI 10.1103/PhysRevE.88.042713
Journal Physical Review E
Volume 88
Number 4
Abstract We analyze zero-lag and cluster synchrony of delay-coupled nonsmooth dynamical systems by extending the master stability approach, and apply this to networks of adaptive threshold-model neurons. For a homogeneous population of excitatory and inhibitory neurons we find (i) that subthreshold adaptation stabilizes or destabilizes synchrony depending on whether the recurrent synaptic excitatory or inhibitory couplings dominate, and (ii) that synchrony is always unstable for networks with balanced recurrent synaptic inputs. If couplings are not too strong, synchronization properties are similar for very different coupling topologies, i.e., random connections or spatial networks with localized connectivity. We generalize our approach for two subpopulations of neurons with nonidentical local dynamics, including bursting, for which activity-based adaptation controls the stability of cluster states, independent of a specific coupling topology.
Bibtex Type of Publication Selected:main selected:adaptation selected:publications
Link to publication Link to original publication Download Bibtex entry

To top