direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Courses in the winter semester 2021/22

Please note that due to the IT attack on the TU Berlin, it is currently not possible to edit this website. So unfortunately not all information is kept up to date.

You can therefore find our course offer in the winter semester 2021/22 here.

Reduced course portfolio due to COVID-19 pandemic

Due to the ongoing COVID-19 pandemic the Neural Information Processing group might not offer all courses for the SoSe 2021. Further information of the execution can be found on ISIS.

The following courses will be offered:

- Praktisches Programmieren und Rechneraufbau 

- Machine intelligence II 

- Einführung in die Informatik . Vertiefung 

- NI-Projekt

The following courses might take place (not decided yet):

- Advanced topics in reinforcement learning

Neural Information Processing Group

We are concerned with the principles underlying information processing in biological systems. On the one hand we want to understand how the brain computes, on the other hand we want to utilize the strategies employed by biological systems for machine learning applications. Our research interests cover three thematic areas.

Models of Neuronal Systems:

Lupe

In collaboration with neurobiologists and clinicians we study how the visual system processes visual information. Research topics include: cortical dynamics, the representation of visual information, adaptation and plasticity, and the role of feedback. More recently we became interested in how perception is linked to cognitive function, and we began to study computational models of decision making in uncertain environments, and how those processes interact with perception and memory.

Machine Learning and Neural Networks:

Lupe

Here we investigate how machines can learn from examples in order to predict and (more recently) act. Research topics include the learning of proper representations, active and semisupervised learning schemes, and prototype-based methods. Motivated by the model-based analysis of decision making in humans we also became interested in reinforcement learning schemes and how these methods can be extended to cope with multi-objective cost functions. In collaboration with colleagues from the application domains, machine learning methods are applied to different problems ranging from computer vision, information retrieval, to chemoinformatics.

Analysis of Neural Data:

Lupe

Here we are interested to apply machine learning and statistical methods to the analysis of multivariate biomedical data, in particular to data which form the basis of our computational studies of neural systems. Research topics vary and currently include spike-sorting and the analysis of multi-tetrode recordings, confocal microscopy and 3D-reconstruction techniques, and the analysis of imaging data. Recently we became interested in the analysis of multimodal data, for example, correlating anatomical, imaging, and genetic data.

Selected Publications

Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
Citation key Ladenbauer2012
Author Ladenbauer, J. and Augustin, M. and Shiau, L. and Obermayer, K.
Year 2012
DOI 10.1371/journal.pcbi.1002478
Journal PLoS Computational Biology
Volume 8
Number 4
Abstract The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.
Bibtex Type of Publication Selected:main selected:adaptation selected:publications
Link to publication Link to original publication Download Bibtex entry

To top

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Head
Prof. Dr. rer. nat. Klaus Obermayer
Room MAR 5043

virtual
consultation hours:
Wed 12am-1pm
registration via email

During the restricted acces to TU buildings in reacion to the Covid-19 pandemic, it is nescessary to register per email for the office hour of Prof. Obermayer.

Please send an email with some days in advance to explain your concern. If it is not possible to solve it by email, you will receive an email at the time of the office hour (Wed, 12-1 pm) including a link which will allow to participate in a video conference with Prof. Obermayer.

All requets will be handled first-in-first-out. Please stay tuned for the whloe time of the office hour.

Administrative Office
Groiss, Camilla
Room MAR 5042
Fon: +49 30 314 73442
Fax: +49 30 314 73121


Consultation hours:
We 9am - 11am