direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

All Publications


Oschmann, F., Berry, H., Obermayer, K. and Lenk, K. (2017). From in Silico Astrocyte Cell Models to Neuron-astrocyte Network Models: A Review. Brain Research Bulletin

Donner, C., Obermayer, K. and Shimazaki, H. (2017). Approximate Inference for Time-varying Interactions and Macroscopic Dynamics of Neural Populations. PLoS Computational Biology, 13

Meyer, R., Ladenbauer, J. and Obermayer, K. (2017). Influence of Mexican Hat Recurrent Connectivity on Noise Correlations and Stimulus Encoding. Frontiers in Computational Neuroscience

Trowitzsch, I., Mohr, J., Kashef, Y. and Obermayer, K. (2017). Robust Detection of Environmental Sounds in Binaural Auditory Scenes. IEEE Transactions on Audio Speech and Language Processing, 25, 1344-1356.

Balta Beylergila, S., Beck, A., Deserno, L., Lorenz, R., Rapp, M., Schlagenhauf, F., Heinz, A. and Obermayer, K. (2017). Dorsolateral prefrontal cortex contributes to the impaired behavioral adaptation in alcohol dependence. Neuroimage: Clinical, 15, 80–94.

Oschmann, F., Mergenthaler, K., Jungnickel, E. and Obermayer, K. (2017). Spatial Separation of Two Different Pathways Accounting for the Generation of Calcium Signals in Astrocytes. PLoS Computational Biology, 13

Augustin, M., Ladenbauer, J., Baumann, F. and Obermayer, K. (2017). Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation. PLoS Computational Biology, 13


Guo, R., Böhmer, W., Hebart, M., Chien, S., Sommer, T., Obermayer, K. and Gläscher, J. (2016). Interaction of Instrumental and Goal-directed Learning Modulates Prediction Error Representations in the Ventral Striatum. Journal of Neuroscience, 36, 12650-12660.

Ladenbauer, J., Augustin, M. and Obermayer, K. (2016). Intrinsic Control Mechanisms of Neuronal Network Dynamics. Control of Self-Organizing Nonlinear Systems. Springer International Publishing, 441-460.,10.1007/978-3-319-28028-8_23

Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichman, F. A. and Obermayer, K. (2016). BOiS - Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors. Frontiers in Psychology, 7

Meyer, R. and Obermayer, K. (2016). pypet: A Python Toolkit for Data Management of Parameter Explorations. Frontiers Neuroinformatics, 10

Aspart, F., Ladenbauer, J. and Obermayer, K. (2016). Extending Integrate-and-fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite. PLOS Computional Biology, 12, e1005206.

Kanev, J., Koutsou, A., Christodoulou, C. and Obermayer, K. (2016). Integrator or Coincidence Detector - a Novel Measure Based on the Discrete Reverse Correlation to Determine a Neuron's Operational Mode. Neural Computation, 28, 1-38.

Xie, S., Wang, L., Obermayer, K. and Zhu, F. (2016). Design of a Visual Stimulation System with LED in the Study of Spatial Selective Attention. Advances in Cognitive Neurodynamics. Springer, 461-468.,10.1007/978-981-10-0207-6_63

Tobia, M. J., Guo, R., Gläscher, J., Schwarze, U., Brassen, S., Büchel, C., Obermayer, K. and Sommer, T. (2016). Altered behavioral and neural responsiveness to counterfactual gains in the elderly. Cognitive, Affective, & Behavioral Neuroscience, 457-472.

Trowitzsch, I., Taghia, J., Kashef, Y. and Obermayer, K. (2016). NIGENS Anechoic Ear Signals. Zenodo.,10.5281/zenodo.168042

Donner, C., Obermayer, K. and Shimazaki, H. (2016). Approximate Inference for Time-varying Interactions and Macroscopic Dynamics of Neural Populations. PLoS Computional Biology, 13, 1 -27.

Huys, Q., Deserno, L., Obermayer, K., Schlagenhauf, F. and Heinz, A. (2016). Model-free temporal-difference learning and dopamine in alcohol dependence: examining concepts from theory and animals in human imaging. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 401 - 410.

Bielivtsov, D., Ladenbauer, J. and Obermayer, K. (2016). Controlling Statistical Moments of Stochastic Dynamical Networks. Physical Review E, 94, 012306.


Seo, S., Mohr, J., Beck, A., Wüstenberg, T., Heinz, A. and Obermayer, K. (2015). Predicting the future relapse of alcohol-dependent patients from structural and functional brain images. Addiction Biology, 20, 1042-1055.

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions