direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Neural Information Processing Group

We are concerned with the principles underlying information processing in biological systems. On the one hand we want to understand how the brain computes, on the other hand we want to utilize the strategies employed by biological systems for machine learning applications. Our research interests cover three thematic areas.

Models of Neuronal Systems:


In collaboration with neurobiologists and clinicians we study how the visual system processes visual information. Research topics include: cortical dynamics, the representation of visual information, adaptation and plasticity, and the role of feedback. More recently we became interested in how perception is linked to cognitive function, and we began to study computational models of decision making in uncertain environments, and how those processes interact with perception and memory.

Machine Learning and Neural Networks:


Here we investigate how machines can learn from examples in order to predict and (more recently) act. Research topics include the learning of proper representations, active and semisupervised learning schemes, and prototype-based methods. Motivated by the model-based analysis of decision making in humans we also became interested in reinforcement learning schemes and how these methods can be extended to cope with multi-objective cost functions. In collaboration with colleagues from the application domains, machine learning methods are applied to different problems ranging from computer vision, information retrieval, to chemoinformatics.

Analysis of Neural Data:


Here we are interested to apply machine learning and statistical methods to the analysis of multivariate biomedical data, in particular to data which form the basis of our computational studies of neural systems. Research topics vary and currently include spike-sorting and the analysis of multi-tetrode recordings, confocal microscopy and 3D-reconstruction techniques, and the analysis of imaging data. Recently we became interested in the analysis of multimodal data, for example, correlating anatomical, imaging, and genetic data.

Selected Publications

Risk-sensitive Markov Control Processes
Citation key Shen2013
Author Shen, Y. and Stannat, W. and Obermayer, K.
Pages 3652–3672
Year 2013
DOI 10.1137/120899005
Journal SIAM Journal on Control and Optimization
Volume 51
Number 5
Abstract We introduce a general framework for measuring risk in the context of Markov control processes with risk maps on general Borel spaces that generalize known concepts of risk measures in mathematical finance, operations research, and behavioral economics. Within the framework, apply- ing weighted norm spaces to incorporate unbounded costs also, we study two types of infinite-horizon risk-sensitive criteria, discounted total risk and average risk, and solve the associated optimization problems by dynamic programming. For the discounted case, we propose a new discount scheme, which is different from the conventional form but consistent with the existing literature, while for the average risk criterion, we state Lyapunov-like stability conditions that generalize known conditions for Markov chains to ensure the existence of solutions to the optimality equation.
Bibtex Type of Publication Selected:main selected:reinforcement selected:decision selected:publications
Link to publication Link to original publication Download Bibtex entry

To top